Differential inequalities and flow-invariance via linear functionals
نویسندگان
چکیده
منابع مشابه
Ostrowski Type Inequalities for Isotonic Linear Functionals
Some inequalities of Ostrowski type for isotonic linear functionals defined on a linear class of function L := {f : [a, b] → R} are established. Applications for integral and discrete inequalities are also given.
متن کاملAlmost multiplicative linear functionals and approximate spectrum
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...
متن کاملLearning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space
Incorporating invariance information is important for many learning problems. To exploit invariances, most existing methods resort to approximations that either lead to expensive optimization problems such as semi-definite programming, or rely on separation oracles to retain tractability. Some methods further limit the space of functions and settle for non-convex models. In this paper, we propo...
متن کاملIntegral Inequalities on Time Scales via the Theory of Isotonic Linear Functionals
and Applied Analysis 3 Theorem 2.3 Jensen’s inequality 5, Theorem 2.2 . Let a, b ∈ T with a < b, and suppose I ⊂ R is an interval. Assume h ∈ Crd a, b ,R satisfies ∫b a |h t |Δt > 0. If Φ ∈ C I,R is convex and f ∈ Crd a, b , I , then Φ ⎛ ⎝ ∫b a |h t |f t Δt ∫b a |h t |Δt ⎞ ⎠ ≤ ∫b a |h t |Φ ( f t ) Δt ∫b a |h t |Δt . 2.3 In 6 , Özkan et al. proved that Theorem 2.3 is also true if we use the nabl...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1979
ISSN: 0022-247X
DOI: 10.1016/0022-247x(79)90180-x